gti

ICC Energy Storage Program Workshop

January 27, 2022

GTI has an 80-Year History of Turning Raw Technology into Practical Energy Solutions

Collaborative Organizations and Programs

Working with utilities to address critical challenges

GTI Office \bigcirc

Energy Storage Options – U.S. Capacities

Stored Energy Comparison (Billion kWh)

- Many energy storage options currently used in today's energy market
- Different forms suited for different uses
 - Electricity
 - Chemical energy carriers

Energy Storage Segments: Short and Long-Duration

Long Duration Energy Storage

- Regulated utilities use 3 primary forms of storage for heat and power needs:
 - Pumped hydro
 - Battery energy storage systems
 - Underground natural gas storage
- Main driver is addressing periods of peak demand
 - Short duration: batteries
 - Long duration: pumped hydro, underground gas

Energy Density of Chemical and Electrical Energy Storage

- Chemical energy systems are lighter and smaller than electrochemical energy storage systems
- Translates into lower costs and reduced size

VOLUMETRIC BASIS

WEIGHT BASIS

U.S. Utility Energy Storage Comparison

Energy Storage System	Under- ground Gas Storage*	Pumped Hydro Energy Storage	Battery Energy Storage
Nominal Capacity (GW)	495	23	1.8
Peak Monthly Energy Delivered, GWh	331,800	2900	52
Cycle Efficiency	98.8%	79%	82%
(Losses) (%)	(1.2%)	(21%)	(18%)

Energy Storage Comparison Natural Gas & Electricity 600 ■ Nominal Capacity (GW) Peak Capacity (GW) 494 500 Storage Capacity (GW) 400 300 200 100 22.8 1.78 0 **Natural Gas** Pumped Hydro **Battery Electric** Storage Storage

^{*}Underground gas storage values stated in thermal equivalents to electric GW or GWh.

Monthly Illinois Residential Electricity and Natural Gas Use

- Long-duration energy storage systems needed to manage seasonal energy demand
 - Space conditioning for homes and buildings
 - Needed over several months in winter
- Energy needed for space heating in winter much larger than summer cooling

Seasonal Generation and Energy Storage Challenge (NREL)

- "Seasonal generation and demand challenges are the most difficult, most costly, and largely unresolved issue with renewable energy"
- Duration of Illinois winter peak space conditioning is
 5 months
 - Routinely met with underground gas storage
 - Batteries well positioned for short-term energy storage

Illinois Gas Storage Locations

- Illinois has geological formations which have a proven track record as safe underground gas storage facilities.
 - Illinois has 28 underground natural gas storage fields with a total storage capacity just over 1 trillion cubic feet of natural gas (DOE-EIA)
 - More than one-tenth of U.S. total natural gas underground storage capacity.
 - Working capacity of underground natural gas storage is 303 Bcf
- Underground gas storage represents a major strategic asset to the State of Illinois and its energy consumers

Decarbonization of Energy Carriers and Energy Storage

- Renewable natural gas (RNG) from bio-energy sources as supplements or replacements for conventional natural gas
 - Includes wastewater treatment plants, landfills, agricultural or other purpose-built digesters
- Carbon capture and sequestration (CCS) at natural gas power plants using combination of pipeline natural gas and underground gas storage
- Renewable or low-carbon hydrogen (H₂) generated from wind, solar, nuclear, or natural gas reformers with CCS.
- Compressed air energy storage (CAES) plants, with energy from wind, solar, nuclear, or combustion turbines using renewable gas and/or CCS.

Zero-Carbon Power & Hydrogen for Illinois' Energy Future

ZERO CARBON POWER • CLEAN HYDROGEN PRODUCTION • UTILIZING LOCAL GEOLOGY

- Research, Development, and Demonstration (RD&D) key to development of clean energy carriers and energy storage systems
- Example: GTI's DOEfunded demonstration project in Illinois
 - Low-carbon hydrogen production
 - CO2 sequestration
 - Hydrogen storage
 - Dispatchable power generation

32'L x 13'W x 70'H

Conclusions

- Compressed gas energy storage systems are a leading, highly efficient, large-scale energy storage solution in today's market
- Illinois energy consumers both natural gas and electric users benefit today from the tremendous underground gas storage facilities located within the State of Illinois.
- As the state progresses in formulating a strategic focus on energy storage, it is vital the framework be technology neutral and inclusive

Turning Raw Technology into Practical Solutions

